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1. Project Summary 

The Madison Metropolitan Sewerage District (MMSD) operates a moderately-sized treatment facility, 
the Nine Springs Wastewater Treatment Plant (NS WWTP), which serves a population of 360,000 
residents within an area of 180 square miles (466 km²). This 42 MGD facility, located in Madison, WI, 
is equipped for phosphorus removal and recovery using mainline enhanced biological phosphorus 
removal (EBPR) and side stream struvite crystallization. The treatment facility faces significant 
challenges in optimizing the efficiency of its struvite-based nutrient recovery processes. Current 
precipitation process simulations are computationally intensive and require extensive data collection to 
accurately account for the impacts of solution chemistry, particle growth dynamics, and reactor 
hydrodynamics on overall reactor performance.  

To address these challenges, a university team was formed to propose and implement a ML based model 
capable of predicting reactor performance from existing historical operations data. From the perspective 
of the NS WWTP, a major driver of the need to improve performance is to ensure consistent P removal 
and recovery, thereby reducing the effects of struvite scaling within the plant as well as reducing 
operational costs with consistent revenue generation from struvite sales. Secondly, developing insights 
into which features most impact the struvite recovery process would allow for the creation of a 
framework of minimum features required for viable performance prediction i.e. the minimum features 
to be considered for future data collection campaigns.  

The major aim of this work is to develop a data driven model that optimizes the removal and recovery 
of P as struvite by analysing conversion and yield. This tool will enhance the prediction of conversion 
and yield enabling modification of the process controls necessary to improve process performance. This 
modelling framework can be easily deployed by other utilities that struggle to manage the performance 
of side stream struvite precipitation.  

2. Background and Problem Statement 

2.1 Operational Challenges 

Since November 2013, NS WWTP has employed Ostara's Pearl and WASSTRIP technologies to 
manage its struvite (MgNH4PO4*6H2O) recovery system. A simplified plant schematic is depicted in 
Figure 1 showing P flow throughout the NS WWTP. This system injects sodium hydroxide (NaOH) and 
magnesium chloride (MgCl₂) into EBPR sludge filtrate feed in a fluidized bed reactor seeded with 
struvite pellets (diameter ~ 1 mm) to drive struvite precipitation. Two reactors operate in parallel, each 
with a volume of 30,949 L and featuring a recycle stream (recycled to the reactor influent), with 24,113 
L of reactor volume placed before the recycle line. The damp struvite product is collected and dried 
using recycled heated water from the facility's system, then organized, stored, and packaged in one-ton 
bags. Ostara collects and stores these "prills," the solid particles produced, and markets them as 
fertilizer. The facility is expected to produce approximately 2.5 metric tons per day. [1] 

However, the NS WWTP still encounters challenges in optimizing its nutrient recovery efforts both in 
terms of P removal (conversion) and recovery (yield). First, the nutrient recovery system currently 
operates with a manual feedback control system for magnesium dosing based on Mg:P molar ratios. 
This primarily effects conversion, with periods of over and under dosing resulting from limited updates 
to the dosing systems and low frequency collection of influent P data. A ML based model could reduce 
overdosing costs by providing insights into the required magnesium dosing, controlling conversion and 
yield parameters of the reactors, and preventing excessive generation of fines in the effluent, which 



could alter reactor performance. Secondly, the plant experiences limited control of “upset” events where 
yield can wildly deteriorate due to the washout of fine particles. While historical phosphorus flows and 
heuristic knowledge of struvite precipitation are currently used to operate the crystallization system, the 
complex dynamics of solution chemistry, particle generation, and reactor hydrodynamics necessitate a 
more sophisticated model-based control strategy to maximize yield. Existing precipitation process 
models require a complex dataset [2,3] not currently available based on the existing NS WWTP 
historical operations data. 

Before this report, these issues were in part investigated by the authors and findings were published in 
the dissertation titled “Understanding the Limits of Struvite Based Phosphorus Recovery Through 
Mechanistic Modelling and Data-driven Performance Evaluations”. In that work the analysis focused 
on prediction of reactor performance based on feed flows only (i.e. the GBT filtrate flows shown in 
Figure 1). The analysis proposed here extends previous work by including the effects of recycle flow, 
which allows for a better accounting of the flow rate and solution composition directly entering the 
struvite crystallizer. The proposed work also expands the types of models considered for prediction. 

 

  

Figure 1. Simplified Plant Schematic with key P pathways in red. Influent P is removed by EBPR. 
P rich EBPR sludge is then fermented in a WASSTRIP to promote P release and separated by GBT 
where filtrate is sent directly to an Ostara Pearl struvite crystallizer (FBR). GBT solids are digested 
and separated again with GBT; the resulting liquids are sent to the struvite crystallizer. Struvite is 
formed in the crystallizer by a magnesium chloride and sodium hydroxide. Crystallizer effluent is 
returned to the plant headworks. 



2.2 Proposed Intelligent Water System Solution and Objectives 

Existing data collection practices in the operation of full-scale struvite recovery systems have led to an 
abundance of operations data, but a limited ability to predict reactor performance or develop process 
optimization strategies. State of the art population balance models for mineral precipitation systems 
require an intensified and specialized data collection campaign that are outside of current collection 
practices and would require significant investment in advanced particle sensing instrumentation from 
WWTP lab facilities. This highlights the need to develop an alternative data driven approach to process 
evaluation as described in this report. The main objectives of this work are as follows: 

• Generate an enhanced dataset that expands the raw operations to include thermodynamic 
features related to mineral solubility, metal to phosphorus molar ratios, cyclical encoding to 
include seasonal effects, and lagged performance indicators to account for unsampled but 
significant process drivers (i.e. seed bed height not directly measured, but whose effect is 
indirectly captured in previous reactor performance). 

• Development and comparison of various machine learning based modelling strategies to predict 
orthophosphate removal (ΔOP), Conversion and Yield 

• Propose a user interface that provides guidance on process sensitivity to operational controls 
and indicates scenarios where low performance is expected for current influent conditions 

A general overview of the proposed solution is presented in Figure 2. By further enhancing the existing 
historical operations data with expert analysis and feature engineering methods we expect the 
development of a data driven modeling framework to provide utilities and practitioners an analysis 
framework that enables the development of predictive models for struvite recovery systems without the 
need for an increase in data collection practices. Further this will allow for the development of process 
optimization strategies, either increasing P removal or reducing operational costs, that are currently 
limited due to the complexity of existing process models. 

 

 

Figure 2. Proposed Solution Framework 
 



3. Methodology 

3.1. Data Collection 

This study utilizes historical data (2018–2023) on flow rates, internal recycle rates, and crystallizer 
influent/effluent concentrations (TSS, FSS, TP, PO4-P, NH4-N, Mg, Na, Ca, K, Fe), along with effluent 
pH, pressure differential, and plant effluent temperature. Data collection frequency varies but includes 
daily recordings at most. Preliminary reactor analysis considered both influent and effluent parameters, 
while ML regression models focused only on influent data and real-time effluent pH to prevent data 
leakage. Earlier data (2013–2018) was excluded due to inconsistencies during the plant’s initial learning 
phase. To assess struvite crystallizer performance, the change in orthophosphate (∆OP), Conversion, 
and Yield were calculated for each observation. A mass balance was conducted on all phosphate-
containing species within a system boundary encompassing influent, effluent, and harvested struvite 
flows, as illustrated in Figure 2. 

 
Figure 3. Simplified Flow Diagram for Struvite Reactor 

The analysis of this reactor was categorized into two system boundaries: Inner Flows and Outer Flows. 
The outer features only consider the feed flow, dosed flows, effluent flow, and harvested struvite as 
well as each streams composition. In contrast inner features consider all the outer features as well as 
the internal recycle flow which are summed to generate an influent reactor flow and composition. The 
internal recycle composition is not used directly as a feature to not introduce data leakage. Features 
labeled as "effective" do not account for recycle flows. The nomenclature for target variables was 
determined based on inner and outer features, leading to classifications such as Delta OP mM inner and 
outer, conversion inner and outer, and yield inner and outer. The formulas for both inner and outer target 
variables are detailed below with a full mass balance given in appendix 9.2  
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𝑌𝑖𝑒𝑙𝑑	(𝑜𝑢𝑡𝑒𝑟) = 	 *(",%$$)	+	*(",$%%
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𝐻𝑅𝑇 =	 ,*+,*
-%$$)	.	--.	.	-/0	234$	.	-56	234$

	 ; 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒	𝐻𝑅𝑇 = 	 ,*+,*
-%$$)		.	-/0	234$	.	-56	234$

     (4) 

Where, 𝐶!",$%%&, 	𝐶!",()$, and  𝐶!",%$$ are the concentration of PO4 - P in the crystallizer feed, influent, 
and effluent respectively;	 𝐶/",$%%& ,	  𝐶/",()$, and  𝐶/",%$$ are the concentration of PO4 - P in the 
crystallizer feed, influent, and effluent respectively. 𝐻𝑅𝑇 and 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒	𝐻𝑅𝑇 are the hydraulic 
residence time with and without accounting for the recycle flow (i.e. true HRT and single pass HRT). 
Equation 3 is derived with an assumption that P phases other than orthophosphate and struvite (i.e. 
microbial P, organic P, condensed P) forms remain non-reactive and do not transition between liquid 
and solid phases in the struvite crystallizer. 

3.2 Data QA/QC Considerations and Preprocessing 

The frequency of data collection has varied over time and across different parameters, with daily 
recordings being the highest frequency since 2018. Initial preprocessing involved compressing 
asynchronous reporting by different users to a daily entry or average value if multiple measurements 
were made. Any positive or negative infinite values were removed from the dataset. All considered 
parameters were filtered to be within ±3 standard deviations from the mean value to account for extreme 
outliers or data entry errors. Only conversion between 0 and 1 and yield between 0 and 1 were 
considered as standard operation of the crystallizer lies in this range. The data were then ready for 
feature engineering and importance analysis.  

3.3 Feature Engineering and Importance Analysis 

The subsequent step involves generating features based on thermodynamic drivers of precipitation, 
autocorrelation, and other time-dependent factors. The molar ratios of influent Mg:P, N:P, and Mg:N 
are included as variables to determine the system's limiting reactant. Additionally, the inverse of OP 
concentration is incorporated as a variable to potentially improve the prediction of Conversion (see 
equation 2). The saturation index of struvite, brushite, amorphous calcium phosphate (ACP), 
hydroxyapatite, and vivianite in the influent (post-MgCl2 and NaOH dosage) is calculated for each 
observation using Visual MINTEQ V4.05 [4] and included as features. To account for seasonal weather 
patterns and weekly or monthly variations (e.g., weekdays vs. weekends), cyclical encoding of the 
observation date is applied within the dataset. 

In accordance with best practice guidelines [5] for sample-to-feature ratios (ranging from 10 to 100), 
feature importance was determined using two distinct metrics: the F-statistic, which evaluates linear 
relationships between features and the target variable, and Mutual Information (MI), which measures 
information gain, including both linear and non-linear dependencies [6]. Further description of how 
these two ranking metrics were used within each model are described in later sections.  



3.4 ML Regression Models 

A range of advanced machine learning methods was employed to develop models capable of predicting 
∆OP, conversion, and yield. These models include Multiple Linear Regression, Extreme Gradient 
Boosting (XGBoost), Random Forest, and Gradient Boosting, all implemented in Python using the 
“scikit-learn [7],” “xgboost [8],” libraries. Manual hyperparameter tuning was performed using scikit-
learn and learning curve plots, while 5-fold cross-validation was applied to enhance model 
generalizability. Ultimately, the final models were selected from various tested models to ensure robust 
predictive performance. The accuracy of the regression predictions was evaluated using the coefficient 
of determination (R²) and the root mean square error (RMSE). 

3.5 Proposed Timeline 

The team set the following dates as internal completion milestones corresponding roughly to the 
sections included in this report. 

• Data Preprocessing – December 24, 2024 
• Feature Importance Analysis – January 10, 2025 
• Model Development – January 25, 2025 
• Analysis of Results – February 5, 2025 
• Report Writing and Submission – February 17, 2025 

4. Results and Discussion 

4.1 Feature Importance Analysis 

To determine which features are most likely to impact model sensitivity all features were ranked 
according to the F statistic and MI scores for each of the target labels as shown in Figure 3. For the first 
iteration of model development, the feature sets selected included only the top 10 features from both 
metrics. These sets were created without replacement where overlap existed between the F score and 
MI to reduce the inclusion of errant features. For ΔOP, the top four features across both metrics were 
feed OP and its inverse value, feed TP, and dosed NaOH flow suggesting P removal is independent of 
magnesium dosing and that overdosing is likely occurring under current operation. For conversion, the 
top two features across both metrics were dosed flows for NaOH and MgCl2 indicating solution 
composition is a driver of performance agreeing with previous experimental [9] and simulation [10] 
work focused on struvite precipitation in upflow FBRs. Finally, for Yield the top three features were 
influent TP-OP (i.e. particulate P), TP, and FSS. These metrics all point towards the importance of 
particulates in the influent stream and suggest particle capture mechanisms related to aggregation of 
smaller freshly generated particles as a main driver of yield. In a system with high recycle flow, such 
as this one, this points towards a sensitivity towards high effluent solids which can further exacerbate 
fines generation and capture. Notably, across all labels there was good agreement between both the F 
score and MI values indicating linear models alone may be strong predictors. The following regression 
analysis considered both linear and nonlinear options to develop a better understanding of the nonlinear 
components and whether they could introduce substantial predictive power to any models relative to 
linear models alone.      

 



  

  

  
Figure 4. F statistic score for Delta OP (green), Conversion (blue) and Yield (red) are shown in Fig. 
4a, c, and e respectively, and Mutual Information scores for Delta OP, Conversion and Yield are 
shown in Fig. 4b, d, and f respectively 

 

 
 

  



4.3 Prediction of ΔOP, Conversion, and Yield  
After conducting correlation analysis on the regression input dataset and selecting sub-datasets with the 
final variables, various AI models were developed to predict ΔOP, Conversion, and Yield for the struvite 
reactor. Different model types were chosen to accommodate both linear and nonlinear interactions 
existing within the dataset. The summarized results featuring the results from optimized models across 
all parameters are shown in Table 1. For ΔOP the best model was a gradient boosting model with an R2 
of 0.82 and RMSE of 0.04. Interestingly, the XGBoost model structure slightly underperformed the 
gradient boosting model which is likely due to the differences in the regularization methods included 
in XGBoost (and are not present in gradient boosting). These differences could cause overfitting of the 
gradient boosting method and since the dataset investigated here is limited, there could be unusual 
sampling occurring even across the 5-fold cross validation leading to overestimates of gradient boosting 
R2 that would be evident with additional data. For Conversion the best model was a multilinear 
regression with an R2 of 0.84 and RMSE of 0.04. All nonlinear methods underperformed the MLR 
indicating that at least for this label, the inclusion of nonlinear features causes model confusion through 
the incorporation of noisy and low information gain features. This is supported by the relatively weaker 
MI values shown in Figure 4 for Conversion relative to the other labels which feature stronger nonlinear 
correlations. Finally, for Yield the strongest model was XGBoost with an R2 of 0.82 and RMSE of 0.07. 
Here nonlinear effects slightly improve predictive performance, though MLR only slightly 
underperformed indicating linear features were most important to overall predictive capability in 
agreement with the strong overlap of high ranking F statistic and MI features shown in Figure 4e and 
4f. This dataset highlights the importance of testing both linear and nonlinear models as well as models 
with varying levels of complexity to best address the predictive task.    
 

Table 1. Regression Performance on Test Sets 
Model R2 RMSE 

 Delta OP mM inner 
MLR 0.75 0.06 

XGBoost 0.78 0.05 
Random forest 0.72 0.05 

Gradient Boosting 0.82 0.04 
 Conversion inner 

MLR 0.84 0.04 
XGBoost 0.81 0.04 

Random forest 0.79 0.05 
Gradient Boosting 0.81 0.05 

 Yield inner 
MLR 0.79 0.07 

XGBoost 0.82 0.07 
Random forest 0.70 0.09 

Gradient Boosting 0.78 0.07 
 

 

  



5 Software Dashboard Integration 

Despite the immense potential that AI offers WWTPs to fully utilize their available data for optimized 
plantwide operation, developing functional models and using them for decision-making can be a 
challenging process for users who may not necessarily have a data science background and are experts 
in other fields. Therefore, an interface that integrates all the desired AI functionalities based on a 
WWTP’s needs would be a crucial step in encouraging the application of AI technology in the 
water/wastewater sector. Thus, a conceptual software dashboard integrating all the features developed 
in this solution into an easy-to-use interface was developed and shown in Figure 5. The tool first (left 
panel) allows a user to select a label to predict (ΔOP, Conversion, and Yield, etc.), a model type (though 
XGB is selected as the default trained model), shows the model input features ranked by their output 
sensitivity, and the current output prediction assuming no changes are made to the system. The center 
panel features a series of windows which show the model outputs as a function of a user selected feature. 
This is helpful to visualize an optimization strategy, or the impact of a potential operator led process 
change. Finally, the right panel acts as a SCADA system control updater by showing the current system 
state for a single selected model feature, and a cursor mark for an update state (movable by user). The 
performance table below is used to understand the overall performance impact on ΔOP, Conversion, 
and Yield simultaneously. A button at the bottom of the right panel is then used to send the update state 
to the SCADA system. This dashboard focuses on linking operator decisions to process performance 
without a need for direct control of the ML models developed in this analysis.    
 
 

 
Figure 5. Software dashboard integrating all the AI models developed in this analysis into a user-
friendly and easy-to-use interface. 



6. Implementation of AI and the Next Steps for This Solution 

This solution provided the following insights for the utility partner and the research team: 

• Team Formation: The successful implementation of AI in WWTPs for decision-making and 
process optimization necessitates a multidisciplinary team. Expertise in water and wastewater 
process engineering, data science, analysis, visualization, and data integration is essential. This 
project benefited from the diverse skills of team members with backgrounds in process 
engineering, struvite reactor knowledge, and machine learning. 

• Primary Challenges: The team faced several significant challenges, including developing 
effective data collection, cleaning, and preprocessing methods, selecting the most appropriate 
algorithms, and ensuring the models' practical application for the plant. Overcoming these 
challenges was possible due to the team's interdisciplinary expertise, thorough literature review, 
and regular collaborative meetings.  

• AI for Decision-Making: A major obstacle in fully leveraging AI in WWTPs is the disconnect 
between complex AI model development and the need for user-friendly interfaces. It is crucial 
to present AI benefits in a way that is accessible to professionals without a data science 
background. Experts with dual knowledge in process engineering and data science can help 
translate AI advancements into practical tools for WWTPs. 

• Broader Implementation and Future Directions: The research team from the University of 
Illinois at Urbana-Champaign is reaching out to other utilities across the United States to 
acquire data from various struvite reactors. This data will be used to apply and adjust the model, 
enhancing its generalizability and making it applicable to a broader range of struvite reactor 
data sets. 

A helpful next step would be to determine if low yield events have influenced the performance of EBPR. 
Specifically, this would involve examining the data to see if these low yield events have affected key 
indicators such as the phosphorus levels in the plant effluent. 

7.  Conclusions, Advantages for Utilities, and Next Steps 

The development of this prediction tool will offer utilities and industry practitioners a comprehensive 
analytical framework for developing predictive models tailored to struvite recovery systems. This 
framework aims to eliminate the necessity for extensive additional data collection, making model 
development more efficient and accessible. Furthermore, it will facilitate the creation of process 
optimization strategies that enhance phosphorus removal efficiency or lower operational costs. These 
advancements address current limitations stemming from the complexity of existing process models, 
ultimately contributing to more sustainable and cost-effective struvite recovery operations. The model's 
ability to decompose values into structural components and reveal underlying patterns further enhances 
its utility, offering deeper insights into the dynamics of the struvite recovery system. 

This analysis on the NS WWTP struvite crystallizer can be summarized to the following insights: 
 

• Though struvite crystallization is a complex collection of crystallization phenomena paired with 
specific reactor hydrodynamics and nonlinear interactions, the primary analysis developed for 
future predictive systems should focus first on linear interactions. Across all labels tested linear 
interactions were strong and performed nearly as well or in some cases outperformed more 
complex models. 



• General heuristic development should focus on influent OP, Mg/NaOH dosing, and particulate 
P for ΔOP, Conversion, and Yield, respectively.  

• Significant differences exist between the predictive capabilities of models developed for inner 
and outer (not shown here) predictions. Future automated control systems should look to act 
based on inner predictions as they better incorporate the role of recycle flows which can be 
strong sources of particulate P and cause a dilution effect on fresh feed. 

• Though some models were developed with sufficient accuracy across all prediction tasks (R2 > 
0.8) to provide guidance to operators, a better performing model is needed for long-term 
confidence in the potential costs savings that could be achieved through operational 
optimization. Better datasets should be sought both in terms of more controlled conditions (i.e. 
pilot scale testing with a specific goal to create a ML focused dataset) and across different 
system types (various struvite crystallizers have been commercialized and feature significant 
differences in capture mechanisms).  

This proposed intelligent water system solution can assist the NS WWTP in evaluating various scenarios 
to predict their influent OP loadings. This capability allows for better prediction of conversion and yield 
and operator intervention to optimize reactor performance. Future work should seek to incorporate 
operational costs into the suggested process updates as economic factors ($ per kg of struvite recovered 
resulting from chemical and pumping energy requirements or reductions in maintenance costs related 
to struvite scaling) may be more important than reactor performance alone. The intelligent water system 
developed in this study can be applied to other utilities nationwide, providing an optimized control 
strategy that can be integrated into existing control systems. 
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9.  Appendix 

9.1 Abbreviations 

Abbreviation Description Abbreviation Description 
ACP Amorphous Calcium 

Phosphate 
MMSD Madison Metropolitan 

Sewerage District 
AI Artificial Intelligence Na Sodium 
Ca Calcium NaOH Sodium Hydroxide 

CSTR Continously Stirred 
Tank Reactor 

NH4-N Ammoniacal Nitrogen 

EBPR Enhanced Biological 
Phosphorus Removal 

OP Orthophosphate 

Fe Iron P Phosphorous 
FSS Fixed Suspended 

Solids 
PO4-P Soluble Phosphorous 

GB Gradient Boosting PSD Particle Size 
Distribution 

GBT Gravity Belt Thickener RF Random Forest 
HRT Hydraulic Retention 

Time 
RMSE Root Mean Square 

Error 
K Potassium SCADA Supervisory Control 

and Data Acquisition 
Mg Magnesium SI Saturation Index 

MgCl2 Magnesium Chloride TP Total Phosphorous 
MI Mutual Information TSS Total Suspended 

Solids 
ML Machine Learning WWTP Wastewater Treatment 

Plant 
MLR Multilinear Regression XGBoost Extreme Gradient 

Boosting 
mM Millimolar   

 

  



9.2 Mass Balance Expressions, Conversion, and Yield 

Total Phosphorus Expressions 

𝑇𝑃 = 𝑂𝑃 + 𝑆𝑡𝑟𝑢𝑣𝑖𝑡𝑒	𝑃 + 𝑂𝑟𝑔𝑎𝑛𝑖𝑐	𝑃 

 

Total Phosphorus Difference Across Reactor 

∆𝑇𝑃 = 	𝐶/",()$ −	𝐶/",%$$ = H𝐶!",()$ +	𝐶012",()$ + 𝐶!23",()$I −	H𝐶!",%$$ +	𝐶012",%$$ + 𝐶!23",%$$I 

Assuming no removal of organic P during crystallization (∆OrganicP = 0) 

∆𝑇𝑃 = 	∆𝑂𝑃 +	∆𝑆𝑡𝑟𝑃	 

 

Struvite Mass Balance Expression 

Assume no consumption from dissolution, generation by OP precipitation without co-precipitants, SS. 

𝐼𝑁 − 𝑂𝑈𝑇 + 𝐺𝐸𝑁 − 𝐶𝑂𝑁𝑆 = 𝐴𝐶𝐶 

𝑄()$𝑋012",()$ − 𝑄%$$𝑋012",%$$ +	𝑄()$H𝐶!",()$ − 𝐶!",%$$I −	𝑀012",&%45 	= 0		 

Given 𝑄()$ =	𝑄%$$, 

𝑄()$(∆𝑆𝑡𝑟𝑃 +	∆𝑂𝑃) = 	𝑀012",&%45		 

𝑄+6 ∗ 𝑀012",&%45 = 𝑋012",&%45 	= ∆𝑆𝑡𝑟𝑃 +	∆𝑂𝑃 

  



Conversion 

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 = 5
𝑃	𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑑	𝑡𝑜	𝑆𝑡𝑟𝑢𝑣𝑖𝑡𝑒

𝐼𝑛𝑓𝑙𝑢𝑒𝑛𝑡	𝑃 6 = 	Z
∆𝑂𝑃
𝐶!",()$

[ 

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 = 	Z
𝐶!",()$ − 𝐶!",%$$

𝐶!",()$
[ 

	𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 = 1 − Z
𝐶!",%$$
𝐶!",()$

[ 

Yield 

𝑌𝑖𝑒𝑙𝑑 = 5
𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑒𝑑	𝑠𝑡𝑟𝑢𝑣𝑖𝑡𝑒

𝑡𝑜𝑡𝑎𝑙	𝑓𝑜𝑟𝑚𝑒𝑑	𝑠𝑡𝑟𝑢𝑣𝑖𝑡𝑒6
=
𝑋012",&%45
∆𝑂𝑃

 

Recall,  𝑋012",&%45 	= ∆𝑆𝑡𝑟𝑃 +	∆𝑂𝑃, 

𝑌𝑖𝑒𝑙𝑑 = 	
∆𝑆𝑡𝑟𝑃 +	∆𝑂𝑃

∆𝑂𝑃
 

Recall,	∆𝑇𝑃 = 	∆𝑂𝑃 +	∆𝑆𝑡𝑟𝑃,	

𝑌𝑖𝑒𝑙𝑑 = 	
∆𝑇𝑃
∆𝑂𝑃

	

  



9.3 Regression model hyperparameter tuning 

Initially, MLR was tested as a baseline model, but its assumption of linearity limited the potential for 
incorporation of nonlinear interactions. RF was then implemented to improve accuracy using ensemble 
learning, but its reliance on bagging made it computationally expensive. To further enhance predictive 
power, GB was applied, leveraging boosting to sequentially refine weak learners. Finally, XGBoost, an 
optimized gradient boosting algorithm with regularization and speed improvements, was developed and 
tested, showing strong predictive capabilities. Different strategies were used to ensure model 
robustness. In ML models, manual search with cross-validation was applied to optimize parameters. 
The model parameters considered for development are as follows: 

• RF 
o n_estimators: [10, 20, 30, 40, 50, 60, 70, 80] 
o max_features: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ,11, 12, 13, 14, 15] 
o max_leaf_nodes: [5, 10, 15, 20, 25, 30, 35, 40, 45, 50 , 55, 60, 65, 70, 75] 

• GB 
o n_estimators: [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] 
o learning_rate: [0.01, 0.5] with 10 linearly spaced values 
o max_depth: [2, 4, 6, 8, 10, 12, 14, 16, 18, 20] 

• XGBoost 
o n_estimators: [1,40] with increments of 1 
o learning_rate: [0,20]*0.1  
o gamma: [0,10]*0.1 
o max_depths: [1,20] with increments of 1 

 
 

Optimized Hyperparameters Across All Model Types 
 XGBoost Hyperparameters 

Predicted Label n_estimators max_depth learning_rate gamma 
∆OP 37 3 0.1 0.0 

Conversion 39 3 0.19 0.0 
Yield 39 5 0.15 0.0 

 RF Hyperparameters 
Predicted Label n_estimators max_features max_leaf_nodes - 

∆OP 30 9 30 - 
Conversion 50 12 50 - 

Yield 30 9 50 - 
 GB Hyperparameters 

Predicted Label n_estimators max_depth learning_rate - 
∆OP 40 8 0.12 - 

Conversion 90 14 0.45 - 
Yield 60 8 0.23 - 

 

 


