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1. Project Summary

The Madison Metropolitan Sewerage District (MMSD) operates a moderately-sized treatment facility,
the Nine Springs Wastewater Treatment Plant (NS WWTP), which serves a population of 360,000
residents within an area of 180 square miles (466 km?). This 42 MGD facility, located in Madison, WI,
is equipped for phosphorus removal and recovery using mainline enhanced biological phosphorus
removal (EBPR) and side stream struvite crystallization. The treatment facility faces significant
challenges in optimizing the efficiency of its struvite-based nutrient recovery processes. Current
precipitation process simulations are computationally intensive and require extensive data collection to
accurately account for the impacts of solution chemistry, particle growth dynamics, and reactor
hydrodynamics on overall reactor performance.

To address these challenges, a university team was formed to propose and implement a ML based model
capable of predicting reactor performance from existing historical operations data. From the perspective
of the NS WWTP, a major driver of the need to improve performance is to ensure consistent P removal
and recovery, thereby reducing the effects of struvite scaling within the plant as well as reducing
operational costs with consistent revenue generation from struvite sales. Secondly, developing insights
into which features most impact the struvite recovery process would allow for the creation of a
framework of minimum features required for viable performance prediction i.e. the minimum features
to be considered for future data collection campaigns.

The major aim of this work is to develop a data driven model that optimizes the removal and recovery
of P as struvite by analysing conversion and yield. This tool will enhance the prediction of conversion
and yield enabling modification of the process controls necessary to improve process performance. This
modelling framework can be easily deployed by other utilities that struggle to manage the performance
of side stream struvite precipitation.

2. Background and Problem Statement

2.1 Operational Challenges

Since November 2013, NS WWTP has employed Ostara's Pearl and WASSTRIP technologies to
manage its struvite (MgNH4PO4*6H,0) recovery system. A simplified plant schematic is depicted in
Figure 1 showing P flow throughout the NS WWTP. This system injects sodium hydroxide (NaOH) and
magnesium chloride (MgClz) into EBPR sludge filtrate feed in a fluidized bed reactor seeded with
struvite pellets (diameter ~ 1 mm) to drive struvite precipitation. Two reactors operate in parallel, each
with a volume of 30,949 L and featuring a recycle stream (recycled to the reactor influent), with 24,113
L of reactor volume placed before the recycle line. The damp struvite product is collected and dried
using recycled heated water from the facility's system, then organized, stored, and packaged in one-ton
bags. Ostara collects and stores these "prills," the solid particles produced, and markets them as
fertilizer. The facility is expected to produce approximately 2.5 metric tons per day. [1]

However, the NS WWTP still encounters challenges in optimizing its nutrient recovery efforts both in
terms of P removal (conversion) and recovery (yield). First, the nutrient recovery system currently
operates with a manual feedback control system for magnesium dosing based on Mg:P molar ratios.
This primarily effects conversion, with periods of over and under dosing resulting from limited updates
to the dosing systems and low frequency collection of influent P data. A ML based model could reduce
overdosing costs by providing insights into the required magnesium dosing, controlling conversion and
yield parameters of the reactors, and preventing excessive generation of fines in the effluent, which



could alter reactor performance. Secondly, the plant experiences limited control of “upset” events where
yield can wildly deteriorate due to the washout of fine particles. While historical phosphorus flows and
heuristic knowledge of struvite precipitation are currently used to operate the crystallization system, the
complex dynamics of solution chemistry, particle generation, and reactor hydrodynamics necessitate a
more sophisticated model-based control strategy to maximize yield. Existing precipitation process
models require a complex dataset [2,3] not currently available based on the existing NS WWTP
historical operations data.
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Figure 1. Simplified Plant Schematic with key P pathways in red. Influent P is removed by EBPR.
P rich EBPR sludge is then fermented in a WASSTRIP to promote P release and separated by GBT
where filtrate is sent directly to an Ostara Pearl struvite crystallizer (FBR). GBT solids are digested
and separated again with GBT; the resulting liquids are sent to the struvite crystallizer. Struvite is
formed in the crystallizer by a magnesium chloride and sodium hydroxide. Crystallizer effluent is
returned to the plant headworks.

Before this report, these issues were in part investigated by the authors and findings were published in
the dissertation titled “Understanding the Limits of Struvite Based Phosphorus Recovery Through
Mechanistic Modelling and Data-driven Performance Evaluations”. In that work the analysis focused
on prediction of reactor performance based on feed flows only (i.e. the GBT filtrate flows shown in
Figure 1). The analysis proposed here extends previous work by including the effects of recycle flow,
which allows for a better accounting of the flow rate and solution composition directly entering the
struvite crystallizer. The proposed work also expands the types of models considered for prediction.



2.2 Proposed Intelligent Water System Solution and Objectives

Existing data collection practices in the operation of full-scale struvite recovery systems have led to an
abundance of operations data, but a limited ability to predict reactor performance or develop process
optimization strategies. State of the art population balance models for mineral precipitation systems
require an intensified and specialized data collection campaign that are outside of current collection
practices and would require significant investment in advanced particle sensing instrumentation from
WWTP lab facilities. This highlights the need to develop an alternative data driven approach to process
evaluation as described in this report. The main objectives of this work are as follows:

* Generate an enhanced dataset that expands the raw operations to include thermodynamic
features related to mineral solubility, metal to phosphorus molar ratios, cyclical encoding to
include seasonal effects, and lagged performance indicators to account for unsampled but
significant process drivers (i.e. seed bed height not directly measured, but whose effect is
indirectly captured in previous reactor performance).

*  Development and comparison of various machine learning based modelling strategies to predict
orthophosphate removal (AOP), Conversion and Yield

* Propose a user interface that provides guidance on process sensitivity to operational controls
and indicates scenarios where low performance is expected for current influent conditions

A general overview of the proposed solution is presented in Figure 2. By further enhancing the existing
historical operations data with expert analysis and feature engineering methods we expect the
development of a data driven modeling framework to provide utilities and practitioners an analysis
framework that enables the development of predictive models for struvite recovery systems without the
need for an increase in data collection practices. Further this will allow for the development of process
optimization strategies, either increasing P removal or reducing operational costs, that are currently
limited due to the complexity of existing process models.

/ [ Developed Predictive ] \

Capabilities

/ Developing Predictive ]\ * Mutual Information: Providing

Regression Al Models evidence for strong relationship
target and features

* Regression Modelling: showing high
prediction performance for delta OP

* F-statistics and Mutual Information N
to deter mine the most important

/ [ Enhanced Dataset ] \ process variables to predict AOP,

. Conversion and Yield. and yielq and moderate for
Generation « Predictive Al Model development \conversmn. /
+ Add thermodynamic features based on extracted features
(mineral solubility).
* Include metal-to-phosphorus molar jup ML Peﬁprmance \ / \
. Prediction .
ratios. [ Plant Benefits ]
+ Use cyclical encoding for seasonal
effects. o . GE » Optimization of process parameters
* Apply lagged indicators for hidden and operational/ economic benefits.
\process drivers. / a » Provides a framework for predictive
@ struvite recovery models without
@ ) requiring more data collection.
Struvite

o » Develop optimization strategies to
K\ Crystallization j/ boost P removal or cut costs,
overcoming complex process model

Qmitations. /

Figure 2. Proposed Solution Framework




3. Methodology
3.1. Data Collection

This study utilizes historical data (2018-2023) on flow rates, internal recycle rates, and crystallizer
influent/effluent concentrations (TSS, FSS, TP, PO4-P, NHs-N, Mg, Na, Ca, K, Fe), along with effluent
pH, pressure differential, and plant effluent temperature. Data collection frequency varies but includes
daily recordings at most. Preliminary reactor analysis considered both influent and effluent parameters,
while ML regression models focused only on influent data and real-time effluent pH to prevent data
leakage. Earlier data (2013-2018) was excluded due to inconsistencies during the plant’s initial learning
phase. To assess struvite crystallizer performance, the change in orthophosphate (AOP), Conversion,
and Yield were calculated for each observation. A mass balance was conducted on all phosphate-
containing species within a system boundary encompassing influent, effluent, and harvested struvite
flows, as illustrated in Figure 2.
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Figure 3. Simplified Flow Diagram for Struvite Reactor

The analysis of this reactor was categorized into two system boundaries: Inner Flows and Outer Flows.
The outer features only consider the feed flow, dosed flows, effluent flow, and harvested struvite as
well as each streams composition. In contrast inner features consider all the outer features as well as
the internal recycle flow which are summed to generate an influent reactor flow and composition. The
internal recycle composition is not used directly as a feature to not introduce data leakage. Features
labeled as "effective" do not account for recycle flows. The nomenclature for target variables was
determined based on inner and outer features, leading to classifications such as Delta OP mM inner and
outer, conversion inner and outer, and yield inner and outer. The formulas for both inner and outer target
variables are detailed below with a full mass balance given in appendix 9.2
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Where, Cop feeds Cop,inf»and Copesr are the concentration of PO4 - P in the crystallizer feed, influent,
and effluent respectively; Crp feeqs Crp,ing, and Crpesp are the concentration of POs - P in the
crystallizer feed, influent, and effluent respectively. HRT and Effective HRT are the hydraulic
residence time with and without accounting for the recycle flow (i.e. true HRT and single pass HRT).
Equation 3 is derived with an assumption that P phases other than orthophosphate and struvite (i.e.
microbial P, organic P, condensed P) forms remain non-reactive and do not transition between liquid
and solid phases in the struvite crystallizer.

3.2 Data QA/QC Considerations and Preprocessing

The frequency of data collection has varied over time and across different parameters, with daily
recordings being the highest frequency since 2018. Initial preprocessing involved compressing
asynchronous reporting by different users to a daily entry or average value if multiple measurements
were made. Any positive or negative infinite values were removed from the dataset. All considered
parameters were filtered to be within £3 standard deviations from the mean value to account for extreme
outliers or data entry errors. Only conversion between 0 and 1 and yield between 0 and 1 were
considered as standard operation of the crystallizer lies in this range. The data were then ready for
feature engineering and importance analysis.

3.3 Feature Engineering and Importance Analysis

The subsequent step involves generating features based on thermodynamic drivers of precipitation,
autocorrelation, and other time-dependent factors. The molar ratios of influent Mg:P, N:P, and Mg:N
are included as variables to determine the system's limiting reactant. Additionally, the inverse of OP
concentration is incorporated as a variable to potentially improve the prediction of Conversion (see
equation 2). The saturation index of struvite, brushite, amorphous calcium phosphate (ACP),
hydroxyapatite, and vivianite in the influent (post-MgCl, and NaOH dosage) is calculated for each
observation using Visual MINTEQ V4.05 [4] and included as features. To account for seasonal weather
patterns and weekly or monthly variations (e.g., weekdays vs. weekends), cyclical encoding of the
observation date is applied within the dataset.

In accordance with best practice guidelines [S] for sample-to-feature ratios (ranging from 10 to 100),
feature importance was determined using two distinct metrics: the F-statistic, which evaluates linear
relationships between features and the target variable, and Mutual Information (MI), which measures
information gain, including both linear and non-linear dependencies [6]. Further description of how
these two ranking metrics were used within each model are described in later sections.



3.4 ML Regression Models

A range of advanced machine learning methods was employed to develop models capable of predicting
AOP, conversion, and yield. These models include Multiple Linear Regression, Extreme Gradient
Boosting (XGBoost), Random Forest, and Gradient Boosting, all implemented in Python using the
“scikit-learn [7],” “xgboost [8],” libraries. Manual hyperparameter tuning was performed using scikit-
learn and learning curve plots, while 5-fold cross-validation was applied to enhance model
generalizability. Ultimately, the final models were selected from various tested models to ensure robust
predictive performance. The accuracy of the regression predictions was evaluated using the coefficient
of determination (R?) and the root mean square error (RMSE).

3.5 Proposed Timeline

The team set the following dates as internal completion milestones corresponding roughly to the
sections included in this report.

Data Preprocessing — December 24, 2024

Feature Importance Analysis — January 10, 2025
Model Development — January 25, 2025

Analysis of Results — February 5, 2025

Report Writing and Submission — February 17, 2025

4. Results and Discussion

4.1 Feature Importance Analysis

To determine which features are most likely to impact model sensitivity all features were ranked
according to the F statistic and MI scores for each of the target labels as shown in Figure 3. For the first
iteration of model development, the feature sets selected included only the top 10 features from both
metrics. These sets were created without replacement where overlap existed between the F score and
MI to reduce the inclusion of errant features. For AOP, the top four features across both metrics were
feed OP and its inverse value, feed TP, and dosed NaOH flow suggesting P removal is independent of
magnesium dosing and that overdosing is likely occurring under current operation. For conversion, the
top two features across both metrics were dosed flows for NaOH and MgCl, indicating solution
composition is a driver of performance agreeing with previous experimental [9] and simulation [10]
work focused on struvite precipitation in upflow FBRs. Finally, for Yield the top three features were
influent TP-OP (i.e. particulate P), TP, and FSS. These metrics all point towards the importance of
particulates in the influent stream and suggest particle capture mechanisms related to aggregation of
smaller freshly generated particles as a main driver of yield. In a system with high recycle flow, such
as this one, this points towards a sensitivity towards high effluent solids which can further exacerbate
fines generation and capture. Notably, across all labels there was good agreement between both the F
score and MI values indicating linear models alone may be strong predictors. The following regression
analysis considered both linear and nonlinear options to develop a better understanding of the nonlinear
components and whether they could introduce substantial predictive power to any models relative to
linear models alone.
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Figure 4. F statistic score for Delta OP (green), Conversion (blue) and Yield (red) are shown in Fig.
4a, ¢, and e respectively, and Mutual Information scores for Delta OP, Conversion and Yield are
shown in Fig. 4b, d, and f respectively



4.3 Prediction of AOP, Conversion, and Yield

After conducting correlation analysis on the regression input dataset and selecting sub-datasets with the
final variables, various Al models were developed to predict AOP, Conversion, and Yield for the struvite
reactor. Different model types were chosen to accommodate both linear and nonlinear interactions
existing within the dataset. The summarized results featuring the results from optimized models across
all parameters are shown in Table 1. For AOP the best model was a gradient boosting model with an R?
of 0.82 and RMSE of 0.04. Interestingly, the XGBoost model structure slightly underperformed the
gradient boosting model which is likely due to the differences in the regularization methods included
in XGBoost (and are not present in gradient boosting). These differences could cause overfitting of the
gradient boosting method and since the dataset investigated here is limited, there could be unusual
sampling occurring even across the 5-fold cross validation leading to overestimates of gradient boosting
R? that would be evident with additional data. For Conversion the best model was a multilinear
regression with an R? of 0.84 and RMSE of 0.04. All nonlinear methods underperformed the MLR
indicating that at least for this label, the inclusion of nonlinear features causes model confusion through
the incorporation of noisy and low information gain features. This is supported by the relatively weaker
MI values shown in Figure 4 for Conversion relative to the other labels which feature stronger nonlinear
correlations. Finally, for Yield the strongest model was XGBoost with an R? of 0.82 and RMSE of 0.07.
Here nonlinear effects slightly improve predictive performance, though MLR only slightly
underperformed indicating linear features were most important to overall predictive capability in
agreement with the strong overlap of high ranking F statistic and MI features shown in Figure 4e and
4f. This dataset highlights the importance of testing both linear and nonlinear models as well as models
with varying levels of complexity to best address the predictive task.

Table 1. Regression Performance on Test Sets

Model R2 RMSE
Delta OP mM inner
MLR 0.75 0.06
XGBoost 0.78 0.05
Random forest 0.72 0.05
Gradient Boosting 0.82 0.04
Conversion inner
MLR 0.84 0.04
XGBoost 0.81 0.04
Random forest 0.79 0.05
Gradient Boosting 0.81 0.05
Yield inner

MLR 0.79 0.07
XGBoost 0.82 0.07
Random forest 0.70 0.09

Gradient Boosting 0.78 0.07




S Software Dashboard Integration

Despite the immense potential that Al offers WWTPs to fully utilize their available data for optimized
plantwide operation, developing functional models and using them for decision-making can be a
challenging process for users who may not necessarily have a data science background and are experts
in other fields. Therefore, an interface that integrates all the desired Al functionalities based on a
WWTP’s needs would be a crucial step in encouraging the application of Al technology in the
water/wastewater sector. Thus, a conceptual software dashboard integrating all the features developed
in this solution into an easy-to-use interface was developed and shown in Figure 5. The tool first (left
panel) allows a user to select a label to predict (AOP, Conversion, and Yield, etc.), a model type (though
XGB is selected as the default trained model), shows the model input features ranked by their output
sensitivity, and the current output prediction assuming no changes are made to the system. The center
panel features a series of windows which show the model outputs as a function of a user selected feature.
This is helpful to visualize an optimization strategy, or the impact of a potential operator led process
change. Finally, the right panel acts as a SCADA system control updater by showing the current system
state for a single selected model feature, and a cursor mark for an update state (movable by user). The
performance table below is used to understand the overall performance impact on AOP, Conversion,
and Yield simultaneously. A button at the bottom of the right panel is then used to send the update state
to the SCADA system. This dashboard focuses on linking operator decisions to process performance
without a need for direct control of the ML models developed in this analysis.
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Figure 5. Software dashboard integrating all the Al models developed in this analysis into a user-
friendly and easy-to-use interface.



6. Implementation of AI and the Next Steps for This Solution

This solution provided the following insights for the utility partner and the research team:

e Team Formation: The successful implementation of Al in WWTPs for decision-making and
process optimization necessitates a multidisciplinary team. Expertise in water and wastewater
process engineering, data science, analysis, visualization, and data integration is essential. This
project benefited from the diverse skills of team members with backgrounds in process
engineering, struvite reactor knowledge, and machine learning.

e Primary Challenges: The team faced several significant challenges, including developing
effective data collection, cleaning, and preprocessing methods, selecting the most appropriate
algorithms, and ensuring the models' practical application for the plant. Overcoming these
challenges was possible due to the team's interdisciplinary expertise, thorough literature review,
and regular collaborative meetings.

e Al for Decision-Making: A major obstacle in fully leveraging Al in WWTPs is the disconnect
between complex Al model development and the need for user-friendly interfaces. It is crucial
to present Al benefits in a way that is accessible to professionals without a data science
background. Experts with dual knowledge in process engineering and data science can help
translate Al advancements into practical tools for WWTPs.

e Broader Implementation and Future Directions: The research team from the University of
[llinois at Urbana-Champaign is reaching out to other utilities across the United States to
acquire data from various struvite reactors. This data will be used to apply and adjust the model,
enhancing its generalizability and making it applicable to a broader range of struvite reactor
data sets.

A helpful next step would be to determine if low yield events have influenced the performance of EBPR.
Specifically, this would involve examining the data to see if these low yield events have affected key
indicators such as the phosphorus levels in the plant effluent.

7. Conclusions, Advantages for Ultilities, and Next Steps

The development of this prediction tool will offer utilities and industry practitioners a comprehensive
analytical framework for developing predictive models tailored to struvite recovery systems. This
framework aims to eliminate the necessity for extensive additional data collection, making model
development more efficient and accessible. Furthermore, it will facilitate the creation of process
optimization strategies that enhance phosphorus removal efficiency or lower operational costs. These
advancements address current limitations stemming from the complexity of existing process models,
ultimately contributing to more sustainable and cost-effective struvite recovery operations. The model's
ability to decompose values into structural components and reveal underlying patterns further enhances
its utility, offering deeper insights into the dynamics of the struvite recovery system.

This analysis on the NS WWTP struvite crystallizer can be summarized to the following insights:

e Though struvite crystallization is a complex collection of crystallization phenomena paired with
specific reactor hydrodynamics and nonlinear interactions, the primary analysis developed for
future predictive systems should focus first on linear interactions. Across all labels tested linear
interactions were strong and performed nearly as well or in some cases outperformed more
complex models.



e General heuristic development should focus on influent OP, Mg/NaOH dosing, and particulate
P for AOP, Conversion, and Yield, respectively.

o Significant differences exist between the predictive capabilities of models developed for inner
and outer (not shown here) predictions. Future automated control systems should look to act
based on inner predictions as they better incorporate the role of recycle flows which can be
strong sources of particulate P and cause a dilution effect on fresh feed.

e Though some models were developed with sufficient accuracy across all prediction tasks (R*>
0.8) to provide guidance to operators, a better performing model is needed for long-term
confidence in the potential costs savings that could be achieved through operational
optimization. Better datasets should be sought both in terms of more controlled conditions (i.e.
pilot scale testing with a specific goal to create a ML focused dataset) and across different
system types (various struvite crystallizers have been commercialized and feature significant
differences in capture mechanisms).

This proposed intelligent water system solution can assist the NS WWTP in evaluating various scenarios
to predict their influent OP loadings. This capability allows for better prediction of conversion and yield
and operator intervention to optimize reactor performance. Future work should seek to incorporate
operational costs into the suggested process updates as economic factors ($ per kg of struvite recovered
resulting from chemical and pumping energy requirements or reductions in maintenance costs related
to struvite scaling) may be more important than reactor performance alone. The intelligent water system
developed in this study can be applied to other utilities nationwide, providing an optimized control
strategy that can be integrated into existing control systems.



7. References

L.

10.

Grooms A, Reusser S, Dose A, Britton A, Prasad R: Operating Experience with Ostara Struvite
Harvesting Process. proc water environ fed 2015, 2015:2162-2177.

Elduayen-Echave B, Lizarralde I, Larraona GS, Ayesa E, Grau P: A New Mass-Based Discretized
Population Balance Model for Precipitation Processes: Application to Struvite Precipitation.
Water Research 2019, 155:26—41.

Galbraith SC, Schneider PA, Flood AE: Model-driven experimental evaluation of struvite
nucleation, growth and aggregation kinetics. Water Research 2014, 56:122—132.

Gustafsson JP: Visual MINTEQ 3.0 user guide. KTH, Department of Land and Water Recources,
Stockholm, Sweden 2011, 550.

Machine Learning in Environmental Research: Common Pitfalls and Best Practices |
Environmental Science & Technology. [date unknown],

Phys. Rev. E 69, 066138 (2004) - Estimating mutual information. [date unknown],

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P,
Weiss R, Dubourg V, et al.: Scikit-learn: Machine Learning in Python. Journal of Machine
Learning Research 2011, 12:2825-2830.

XGBoost Python Package — xgboost 2.1.3 documentation. [date unknown],

Ye X, Ye Z-L, Lou Y, Pan S, Wang X, Wang MK, Chen S: A comprehensive understanding of
saturation index and upflow velocity in a pilot-scale fluidized bed reactor for struvite recovery
from swine wastewater. Powder Technology 2016, 295:16-26.

Ye X, Gao Y, Cheng J, Chu D, Ye Z-L, Chen S: Numerical simulation of struvite crystallization
in fluidized bed reactor. Chemical Engineering Science 2018, 176:242-253,

8. Disclosures

No financial support from any person(s), institution, and/or company was received to prepare this report
and participate in the 2024 LIFT Intelligent Water Systems Challenge.



9. Appendix
9.1 Abbreviations

Abbreviation
ACP

Al
Ca
CSTR
EBPR

Fe
FSS

GB

GBT
HRT

Mg
MgCl,
MI
ML
MLR

mM

Description
Amorphous Calcium
Phosphate
Artificial Intelligence
Calcium
Continously Stirred
Tank Reactor
Enhanced Biological
Phosphorus Removal
Iron
Fixed Suspended
Solids
Gradient Boosting

Gravity Belt Thickener
Hydraulic Retention
Time
Potassium
Magnesium
Magnesium Chloride
Mutual Information
Machine Learning

Multilinear Regression

Millimolar

Abbreviation
MMSD

Na
NaOH
NH4-N

OP

PO4-P

PSD

RMSE
SCADA
SI
TP
TSS

WWTP

XGBoost

Description
Madison Metropolitan
Sewerage District
Sodium
Sodium Hydroxide
Ammoniacal Nitrogen

Orthophosphate

Phosphorous
Soluble Phosphorous

Particle Size
Distribution
Random Forest
Root Mean Square
Error
Supervisory Control
and Data Acquisition
Saturation Index
Total Phosphorous
Total Suspended
Solids
Wastewater Treatment
Plant
Extreme Gradient
Boosting



9.2 Mass Balance Expressions, Conversion, and Yield

Total Phosphorus Expressions

TP = OP + Struvite P + Organic P

Total Phosphorus Difference Across Reactor

ATP = Crping — Crpesr = (COP,inf + Cserp,ing + COrgP,inf) - (COP,eff + Cstrpefr + COrgP,eff)
Assuming no removal of organic P during crystallization (AOrganicP = 0)

ATP = AOP + AStrP

Struvite Mass Balance Expression

Assume no consumption from dissolution, generation by OP precipitation without co-precipitants, SS.

IN — OUT + GEN — €ONS = ACC

QingXserping — QerrXserperr + Qing(Coping — Copers) — Mstrp,aepo =0
Given anf = Qeff:
Qinf(AStTP + AOP) = MStrP,depo

Q_1 * MStrP,depo = XStrP,depo = AStrP + AOP



Conversion

P converted to Struvite> _ < AOP >

C ion = =
onverston ( Influent P

Cop,inf

Cop,inf — Cop,eff>

Conversion = <
Cop,inf

Cop,eff>

Conversion =1 — <
Cop,inf

Yield

deposited struvite ) Xstrp,depo

Yield = ( =" AOP

total formed struvite

Recall, Xsirpaepo = AStrP + AOP,

Jiorg _ AStrP + A0P
terd = AOP
Recall, ATP = AOP + AStrP,
ATP
Yield = —

AOP



9.3 Regression model hyperparameter tuning

Initially, MLR was tested as a baseline model, but its assumption of linearity limited the potential for
incorporation of nonlinear interactions. RF was then implemented to improve accuracy using ensemble
learning, but its reliance on bagging made it computationally expensive. To further enhance predictive
power, GB was applied, leveraging boosting to sequentially refine weak learners. Finally, XGBoost, an
optimized gradient boosting algorithm with regularization and speed improvements, was developed and
tested, showing strong predictive capabilities. Different strategies were used to ensure model
robustness. In ML models, manual search with cross-validation was applied to optimize parameters.
The model parameters considered for development are as follows:

e RF
o n_estimators: [10, 20, 30, 40, 50, 60, 70, 80]
max_features: [1,2,3,4,5,6,7,8,9,10,11, 12, 13, 14, 15]
max_leaf nodes: [5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75]

o n_estimators: [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
o learning rate: [0.01, 0.5] with 10 linearly spaced values
o max_depth: [2,4, 6,8, 10, 12, 14, 16, 18, 20]
¢  XGBoost
o n_estimators: [1,40] with increments of 1
o learning_rate: [0,20]*0.1
o gamma: [0,10]*0.1
o max_depths: [1,20] with increments of 1

Optimized Hyperparameters Across All Model Types

XGBoost Hyperparameters

Predicted Label n_estimators max_depth learning_rate gamma
AOP 37 3 0.1 0.0
Conversion 39 3 0.19 0.0
Yield 39 5 0.15 0.0
RF Hyperparameters
Predicted Label n_estimators max_features max_leaf nodes -
AOP 30 9 30 -
Conversion 50 12 50 -
Yield 30 9 50 -
GB Hyperparameters
Predicted Label n_estimators max_depth learning_rate -
AOP 40 8 0.12 -
Conversion 90 14 0.45 -

Yield 60 8 0.23 -




